
Low cost, high performance frequency/interval counters
Kasper Pedersen

kkp2008@kasperkp.dk

Abstract

Frequency counters can be designed with good, bad, or
ugly performance. For some reason bad and ugly are
most popular. We describe a way to build a simple
counter that has better than 100 ps RMS noise while
maintaining low cost, and only uses easily obtainable
components.

Introduction

The simplest approach to a frequency counter is the
gated counter. The signal of interest is fed to a counter
which in turn is gated by a pulse of known length, such
as 1 second. The shortcoming of this approach is that the
quantiztion error is 1/2 LSB regardless of input
frequency, so with a 1 second gate the quantization error
is 0.5Hz. To get precision on the order of 1ppb on a
10MHz input, the gate time would have to be 100
seconds. On a 30Hz signal the gate time would have to
be one year.

A slightly better approach is the reciprocal counter.
Instead of counting the signal gated by the reference, the
reference is counted and gated by the signal, divided
down so the gate time is, say, one second. Such a counter
with a 10MHz reference will have 10 million counts per
second regardless of input, and will need 100 seconds
gate time to achieve 1ppb precision regardless of input
frequency. The simple way to get better performance is
to increase the reference frequency, only 10MHz is the
industry standard for frequency standards, the PLLs
required for upconversion add cost, and beyond 200MHz
there are no cheap prototyping-friendly CPLDs.

The reciprocal counter can be greatly improved at little
cost by adding an interpolator. The interpolator converts
the quantization error of the counter circuit into an
analog value, converts the analog value to digital and
treats it as a fractional count.

The counter described herein uses a low cost
interpolator, consisting of a CPLD, a few diodes, and the
A/D converter in a microcontroller.

 fig.1

The reciprocal interpolating counter

The signal clock is applied to the clock input of
synchronizer flipflop a, and a control term to the D input
of flipflop a. When the host processor desires to
timestamp an edge, it sets the control term low. One or
two signal clocks later, depending on multiplexer b, the
holding register for the signal counter will be disabled,
capturing the value of the signal counter.
The signal from flipflop c then crosses clock domains to
the second part of the counter. Synchronizer flipflops d
and f similarly disable the holding register on the
reference counter side. The two holding registers now
hold the signal edge number and the reference edge
number. A reciprocal frequency counter triggers this

process twice, subtracts*, and divides the two differences
to yield the ratio between the signal and reference.

The quantization error occurs at the input of flipflop d
(or f depending on multiplexer e) where the signal
crosses clock domains. Thus, the interpolator will see a
time difference between its two inputs of 0-1 clocks or 1-
2 clocks depending on multiplexer e, representing the
instantaneous phase of the reference clock relative to the
signal edge captured. This difference must be converted
to a digital value with high precision and linearity, and
directly limits the attainable precision for the whole
system. A system without interpolator has an inherent 1
clock limit.

*usually by clearing both counters on the first trigger

Processor

a
b

c

Signal counter

Holding register

d
e

f
Interpolator

Reference counter

Holding register

Digital section

The goal is to keep cost low. Since the reference clock
chosen is 10 or 20MHz this means we can clock the host
microprocessor from the reference. The gain is twofold:
We eliminate a separate crystal for the cpu, and even the
cheapest members of ATMega series have a 16 bit
timer/counter with input capture capability, providing the
reference counter directly on the cpu. It needs to be
lenghtened to 32 bits or more, this can be done in
software using an overflow interrupt.

The signal counter needs to run at reasonably high
frequencies though this can be helped by a prescaler. The
effective length of the signal counter needs to be greater
than the maximum capture interval, a million counts or
more at high frequencies and one second interval. Like
the reference counter it can be lengthened in software by
observing the rollover of the counter, in practice the
falling edge of the topmost bit. Thus, 16 bits in hardware
is plenty for the signal counter and the holding register.

Synchronizers c,f need low phase noise since noise here
adds to the output. A MSI implementation needs at least
7 devices, 4 for the counter and holding register, 2 for
flipflops, and 1 for mux. Mounting this many devices,
their associated decoupling capacitors, and PCB real
estate is costly. The alternative is a low cost CPLD. We
need 4 macrocells for the synchronizer chain and about
10 for bus interface, leaving us either 18 or 52
macrocells for the counter and holding register in the two
smallest Xilinx Coolrunner parts. A 9 bit signal edge
counter may suffice if a sufficiently large prescaler is
used. With an arbitrarily chosen 20kHz limit on the
lenghtening interrupt the upper limit becomes
2^9*20kHz=10.24MHz. The cost is ~e1 and ~e3 for the
two parts.

Interpolator

Designing an interpolator without exotic components
limits selection severely. The Coolrunner CPLD has
relatively slow but constant, risetimes, and we need a
switch that has picosecond-range switching uncertainty.
The 1N4148 diode is such a part. BAS16 is similar. They
are 200mA 100V types marketed as high speed
switching diodes, and likely the most common diode
around. While the datasheet states 4ns switching speed,
the switching uncertainty is much less. By using three of
these diodes in combination with the CPLD, we can
create a simple current-gated integrator circuit that has
less than 50ps noise:

 fig. 2

When idle, the output of /c is low, and diodes h and i are
conducting. The capacitor sees a low impedance,
consisting of the /c output impedance and the impedance
of diode h in series, and is preset to the starting value.
When the gate starts closing /c goes high. Diode h turns
off, and the capacitor starts charging. When f goes low
diode g steals the current from the current source, diode
i turns off, and the charging stops. Since diodes h and i
operate into a capacitive load, and at the same current,
the reverse recovery charges mostly cancel: When h
turns off, additional charge is injected into the capacitor,
then i turns off and steals a similar charge. Likewise the
voltage dependant capacitance of diodes h and i are
opposite with respect to integrator voltage, mostly
canceling nonlinearity from varactor effects.

The charge left on the capacitor must be quantitized
before it leaks away through parasitics and diode
leakage. With a 1nF capacitor and a leakage of 100
nanoamperes the resulting slew rate is 100V/s, so for a
1mV error the amplifier j and the A/D converter needs to
settle and do sample/hold in less than 10 microseconds.
With a 200kHz A/D clock the AVR series can do this,
though it should be noted that as the leakage current in
the diodes is reltively constant, sampling at twice that
does not degrade linearity significantly.

With a 8mA current source and 1nF capacitor, the
change in capacitor voltage is 8mV/ns, yielding 320 ps
resolution if applied to the A/D converter directly. The
test circuit used a TLC072 as straight buffer, and the
output when the counter was fed with its own reference
clock was flicker free. Thus the peak to peak noise of the
synchronizer chain, Coolrunner CPLD input, output, and
diodes, does not exceed ~50 ps RMS.

When applying signals other than the reference clock,
the figure deteoriates to ~100ps since the beat between
noise generated by the reference, and noise generated by
the signal applied, causes shifts in input thresholds, and
thus in arrival timing.

Calibrating the interpolator

The system needs to be self calibrating since a separate
calibration process would add cost. By running the
counter against its own reference, and using the bypass
and non-bypass states of multiplexer e, the cpu can
acquire the capacitor voltages resulting from two arrival
times exactly one reference clock cycle apart. When the
A/D converter value is divided by this difference, and
subtracted from the value in the reference holding
register (in the test circuit the TCNT1 counter in the
AVR cpu), the result is correct scaling.

The temperature coefficient of diode h and the nmos
transistor in the CPLD output /c also cause drift, in the
test circuit this proved to be on the order of 1ps/s. This
can be compensated out by occasionally doing a second
A/D conversion after the circuit has been reset to the
starting state, thereby negating the drift without the
penalty of halving the acquisition rate for signals faster
than half the A/D conversion rate.

A/Dc

f

ibg

h

i

j

Linear regression

Since a frequency counter is supposed to measure the
ratio between two frequencies, and not the time it takes
for some number of cycles to pass, performance of the
counter can be improved by sampling many times over
the duration of the acquisition period, and not just at the
beginning and end. Since the AVR A/D can do around
15k conversions per second, and the effective noise
drops with roughly the square root of of the number of
acquistions, with a one second gate time the equivalent
flicker free start-stop uncertainty drops from ~320ps to
~2.6ps. Thus, using linear regression, the test circuit
provided 12 flicker free digits at 1 second gate time.
If linear regression is applied to a counter without
interpolator, the beat between the applied signal and the
reference produces input dependant flicker, and input
dependant reduced precision. This is most pronounced
when the ratio between the signal and the reference is
(almost) an integer.

Where the reciprocal counter needs 100 seconds to do a
1ppb measurement, the similar reciprocal interpolating
regressing counter provides 1000 times better precision
in 1/100th the time.

Implementations for slow input signals

If the input signal bandwidth is low, low defined as less
than the conversion rate of the interpolator and A/D
converter, the signal counter and signal holding register
can be eliminated, leaving just the three synchronizer
flipflops c,d,f and multiplexer e. Keeping multiplexer e
allows self calibration, thus for applications like PPS
inputs in GPS disciplined oscillators the added cost of
providing sub-nanosecond quantization is set by the four
flipflops, the capacitor, the current source, and the
buffer. The cost saving going from a sub-nanosecond
input to a poor 100ns one is ~e1.5. Compared to the cost
of other components in a frequency counter system, an
interpolator provides a lot of performance per euro.

Closing notes

Neither the interpolating reciprocal counter nor the
regressing counter are new. They are, however, regarded
by most engineers as somewhat of a black art, the
domain of custom silicon and expensive laboratory
instruments. In reality interpolating counters and capture
systems can be built with cheap components already in
stock, at low cost, while still yielding good performance.
Why settle for less?

 ns ppb

 single edge arrival time frequency error
 relative to nominal spec

 time in seconds time in seconds

Left: Timestamping a 18.414MHz TCXO against a 10MHz DCF-DO: ~500 ps p-p, mostly due to A/D quantization.
Right: Comparing a 10MHz TCXO and a 18.414MHz TCXO with 1 second gate time.

 208

 209

 210

 211

 212

 213

 214

 215

 216

 78 78.5 79 79.5 80 80.5 81 81.5 82

measured-predicted

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 1000 2000 3000 4000 5000

TXCO/TXCO frequency error, 10 -̂9

VHDL source for test implementation

--
--
-- Company:
-- Engineer: Kasper K. Pedersen
--
-- Create Date: 23:32:39 01/04/2008
-- Design Name: Timestamper
-- Module Name: top - Behavioral
-- Project Name: Targeting LIDAR
-- Target Devices: 64MC Coolrunner, 64MC CoolrunnerII
-- Tool versions: 9.1i.J.30
-- Description: Event timestamper with two non-simultaneous channels
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity top is
 Port (refclk : in STD_LOGIC; --
 cputx : in STD_LOGIC; -- not related to T/F
 cpurx : out STD_LOGIC; -- not related to T/F
 cputen : in STD_LOGIC; -- not related to T/F
 transrx : in STD_LOGIC; -- not related to T/F
 transtx : out STD_LOGIC; -- not related to T/F
 transen : out STD_LOGIC; -- not related to T/F
 miso : out STD_LOGIC; -- SPI shift out of hold reg
 mosi : in STD_LOGIC; -- SPI shift-in of configword
 sck : in STD_LOGIC; -- SPI shift clock
 ss : in STD_LOGIC; -- 0 resets, 1 to captures
 icp1 : out STD_LOGIC; -- capture strobe to ref ctr/status
 pd4 : in STD_LOGIC; -- nc
 pd5 : in STD_LOGIC; -- nc
 int1 : out STD_LOGIC; -- signal ctr elongation
 pd7 : in STD_LOGIC; -- nc
 tosc2 : in STD_LOGIC; -- nc
 modeshift : in STD_LOGIC; -- 1 to load config word
 led1 : out STD_LOGIC; -- capture indicator
 led2 : out STD_LOGIC; -- not related to T/F

 rampstopN : out STD_LOGIC; -- interpolator outputs
 rampstartP: out STD_LOGIC;

 sigclk : in STD_LOGIC; -- input to signal counter, connected
 sigout : out STD_LOGIC; -- to this pin, the input mux output
 sigin1 : in STD_LOGIC; -- input 1
 sigin2 : in STD_LOGIC); -- input 2
end top;

architecture Behavioral of top is
 signal mux: STD_LOGIC_VECTOR(3 downto 0);
 signal eventcounter,eventhold: STD_LOGIC_VECTOR(15 downto 0);
 signal readindex:STD_LOGIC_VECTOR(3 downto 0);
 signal syn1siggate,siggate:STD_LOGIC;
 signal syn1cpugate,cpugate:STD_LOGIC;
begin

 --mux: input source 1, 2, REF, or off
 multiplexer: process(sigin1, sigin2, mux)
 begin
 if mux(1 downto 0)="00" then
 sigout<=sigin1;
 elsif mux(1 downto 0)="01" then
 sigout<=sigin2;
 elsif mux(1 downto 0)="10" then
 sigout<=refclk;
 else
 sigout<='0';
 end if;
 end process;

 --ct: count edge number on source
 signalcounter: process(sigclk)
 begin
 if RISING_EDGE(sigclk) then
 eventcounter <= eventcounter +1;
 if siggate='1' then
 eventhold<=eventcounter;
 end if;
 end if;
 end process;

 --mux for serial readout of source edge hold register to cpu
 readselect: process(readindex)
 begin
 case readindex is
 when "0000" => miso <= eventhold(0);
 when "0001" => miso <= eventhold(1);
 when "0010" => miso <= eventhold(2);
 when "0011" => miso <= eventhold(3);
 when "0100" => miso <= eventhold(4);
 when "0101" => miso <= eventhold(5);
 when "0110" => miso <= eventhold(6);
 when "0111" => miso <= eventhold(7);
 when "1000" => miso <= eventhold(8);
 when "1001" => miso <= eventhold(9);
 when "1010" => miso <= eventhold(10);
 when "1011" => miso <= eventhold(11);
 when "1100" => miso <= eventhold(12);
 when "1101" => miso <= eventhold(13);
 when "1110" => miso <= eventhold(14);
 when "1111" => miso <= eventhold(15);
 when others => miso <='0';
 end case;
 end process;

 --SPI interface towards the cpu, counter controlling the mux above,
 --and shift-in of the 4 bit configuration word controlling
 --the source multiplexer and the two muxes in the sync chain
 readclock: process(sck,readindex)
 begin
 if RISING_EDGE(sck) then
 readindex <= readindex + 1;
 if modeshift='1' then
 mux <= mux(2 downto 0) & mosi;
 end if;
 end if;
 if ss='0' then --async clear on 0
 readindex<="1111";
 end if;
 end process;

 gatesig: process(sigclk, ss)
 begin
 if RISING_EDGE(sigclk) then
 syn1siggate <= not ss; -- ss 9 is prepare,1 is do-capture
 siggate <= syn1siggate; -- 2FF-synchronizer mode
 --gate is signal-synchronous, goes low now, locking the counter.
 if mux(3)='1' then
 siggate <= not ss; -- 1FF-synchronizer mode
 end if;
 end if;
 --async reset: gate ON when ss goes low.
 if ss='0' then
 syn1siggate <= '1';
 siggate <= '1';
 end if;
 end process;

 gatecpu: process(refclk)
 begin
 if RISING_EDGE(refclk) then
 syn1cpugate <= siggate;
 cpugate <= syn1cpugate; --cpugate - siggate = 1..2 clock
 if mux(2)='1' then
 cpugate <= siggate; --0..1 clock (for interpolator calibration)
 end if;
 end if;
 --no async when ss is 0, no need, after 2 clk it has propagated.
 end process;

 rampstartP <= not siggate; --interpolator outputs
 rampstopN <= cpugate;

 icp1 <= cpugate; --capture indicator
 int1 <= eventcounter(15); --signal ctr elongation.

 transtx <= cputx;
 cpurx <= transrx or not cputen; --cputen low=don't rcv.
 transen <= not cputen; --inverted! low is transmit
 led2 <= not ss; --show capture status on LED
 led1 <= cputen; --activity indicator
end Behavioral;

52 MC, 76 PT, 45 FF, 87MHz sigclock max, 95MHz refclock max in the cheapest part.

