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Abstract

Classic variable divider and fractional divider PLL 
synthesizers have wide tuning range but coarse 
resolution. We describe a digital-domain PLL that is 
suitable for narrow tuning range (10-5) and arbitrarily 
fine resolution (10-12 or better). It is most suited for 
oddball frequencies, and not so much for straight 
integer divisors. 

A test implementation was built at a cost of eur.2 for 
the loop controller. A microcontroller implements all 
functions.

PLL designs

In the classic PLL, a phase detector is fed with two 
signals of mostly-identical frequency. Dividers are 
used to prescale the reference and the VFO to 
achieve frequency scaling, and the resolution of the 
PLL system is set by the resolution of these 
dividers. Where integer dividers won't do, fractional-
N dividers are an option. The downside to the 
fractional-N divider is that, as the resolution goes 
up, so does the low-frequency noise, and thus 
close-in noise around the VFO output. If μHz 

resolution is needed, no analogue filter will work.
An alternative to the fractional-N divider is to 
replace a divider on either the reference path or the 
vfo path with a numerically controlled oscillator 
(DDS). This does work very well but is power 
hungry and expensive. 

A post-mixer offset approach

Compared to a standard PLL, there is one 
fundamental difference in the arrangement in fig.1: 
The oscillator to be disciplined, and the reference, 
are both applied to to the phase detector as-is, at 
very different frequencies. The phase detector is 
sampled, and produces an instantaneous phase 
value. This value is compared against a predicted 
value, and the error between these two values is 
what drives the loop. This arrangement moves the 
frequency control from a divider before the phase 
detector, to after the phase detector. Here 
frequency control can be introduced by slewing of 
the phase.
This arrangement cannot easily be built in the 
analogue domain, as the output of the phase 
detector, adder, and  offset generator require 
circular-number-system outputs.

                    fig.1

Phase detector implementation

An all-digital detector is possible when REF and XO 
have no large common divisors. In the test 
implementation, REF is a 14.7456MHz OCXO, and 
XO is 20MHz.
These have a suitably small greatest common 
denominator, 6400 Hz. In 1/6400 second, REF will 
complete 2304 cycles, and XO 3125. 
If the phase detector samples 3125 times, it will get 
3125 equidistant points on the REF phase circle. 
The point spacing is then GCD(FXO,FREF)/(FREF*FXO) 
= 22 ps, leading to decent phase resolution.

The ATMega168 used for the test implementation 
can not do this. Instead it samples at 3/FXO 

intervals. It is still possible to get the full resolution 
by staggering sample runs with 1 clock delay, so a 
slower microcontroller may keep resolution at the 
expense of time.
When time is not available, a lower number of 
samples may be used, though picking a good 
number becomes a manual endeavor. 

The selection of sampling interval and number of 
samples is done by computing the phase point of 
each sampling point, verifying distribution, and then 
dividing the sampling points into a suitably large 

Phase
detector

+

Phase offset
generator

Loop
filter

D/A

XO

REF



number of buckets. For the test setup, 321 samples 
at 3 clock interval was eyeballed to be a neat, 
acceptably equidistant point constellation.

fig.2    

The sampling points are here divided into 16 
buckets, each bucket being 20 or 21 samples. A run 
of 321 sets of machine instructions is generated, 
each set doing a single sample and then increment 
the bucket-count if REF was found to be high at that 
instant. After the bins are filled, the phase can be 
found by finding the center of distribution.
The theoretical single-shot resolution is 
1/FREF/321=211 ps. No external hardware is 
required, REF is directly applied to an input pin, and 
the internal synchronizer flip flop is used as the 
sampling element. An external flipflop will have 
better performance even at 211ps resolution. 

A complication is that the sample run will not start 
phase synchronously with the REF/XO beat, giving 
us random-looking phase. This will be handled by 
the offset generator, and helps move post-filtering 
resolution closer to the theoretical 22ps.

The output of the detector is arbitrarily chosen to be 
2048 divisions.

Phase offset generator

The offset generator/predictor is invoked after the 
phase detector has done a sample run. The sample 
run is time stamped, allowing the predictor to simply 
calculate φ=t* dφ/dt. If the system is to be run-time 
adjustable, it is better to calculate Δφ=Δt* dφ/dt, 
φn=φn-1+Δφ.

To do the above calculation without requiring 
excessively long integers, we can exploit that the 
signals are periodic.
Δφ=Δt* dφ/dt = (Δt mod (FXO/GCD(FXO,FREF)))* dφ/dt
Thus, for the test implementation, a modulus of 
3125 can be applied to Δt before multiplication. In a 
32-bit integer this leaves 1.3M counts of usable 
resolution.

In the test implementation, the phase step (in 
periods) should be 2304/3125=0.73728. In 24.8 
scaled fixed point, the per-XO phase increment 
should be   0.73728 * phase divisions per turn * 28 

=386547.057, rounded to 386547.
The rounded value corresponds to a phase 
advance per XO clock of 0.73727989, an error of 
2.16Hz, or 0.11 ppm.

If this accuracy is insufficient, or adjustment is 
needed, additional or higher resolution generators 
may be used. For the test implementation, an 
additional generator with variable increment rate 
was used. A trim value is accumulated into a 32 bit 
variable at a rate of 78.125kHz, and the topmost 11 
bit (for a phase span of 2048) are added to the 
above compensation. The resolution thus becomes 
78.125kHz/232 = 18μHz. This is against REF, so this 
translates to a resolution of  1.233* 10-12.

It is not necessary to run a fast interrupt to do the 
78kHz accumulation; It is more efficient to calculate 
the number of 78kHz periods that have passed, and 
then compute the accumulated value whenever 
required.

Filter
When the predicted value is subtracted, the output 
is the error signal. It will be overlaid with the 
resolution noise from the phase detector, pulling 
effects in the microcontroller inputs, phase jitter on 
the microcontroller clock inputs, and other sources.
The filter tau should be chosen so it matches the 
crossover where the XO's (rising with tau) instability 
exceeds the (falling with tau) filtered noise from the 
phase detector.
For the test implementation, the microcontroller 
does 10k acquisitions per second, so for a 1-
second tau the noise is down by about 100x, and 
found to be equivalent to ~3ps rms before the DAC.

Unlike for an analogue PLL, the filter does not need 
to be wide to allow lock-in. The input to the filter 
should not be the raw phase signal. Instead, on 
every acquisition, transfer the change in phase onto 
an accumulated phase value. This will provide 
continuous phase to the filter when the phase 
detector rolls over.

DAC implementation
The test implementation uses dual 78kHz PWM 
channels summed in hardware for 15 bit resolution. 
Linearity and offset do not matter much, as long as 
it is monotonous. The PWM is filtered with a 2nd 
order 10ms filter, and applied to the XO varactor. 
Tuning range is +/- 25 ppm.

It is possible to add ΔΣ modulation techniques to 
the PWM. It should be noted, though, that since the 
phase detector needs the occasional run of ~1000 
uninterrupted clock cycles, interrupting at high rate 
to create a fast software ΔΣ in the same 
microcontroller will break the phase detector.



Results

The quite unstable on-chip oscillator of the 
ATMega168 locks to the OCXO in time set by the 
filter. 50ms is suitable since it is decidedly noisy, 
and a lower value would be better but the current 
external filter prevents that.

A second test setup was built, with a better quality 
20MHz XO, and an outer loop locking to an external 
pulse-per-second signal by adjusting the phase 
predictor. This setup has the medium term stability 
of the non-adjustable OCXO, and the close-in noise 

figure of the XO. Compared to a conventional 
GPSDO, it has no drift from reference voltage, DAC 
gain, or varactor path aging.

Putting a narrow bandwidth, high resolution PLL 
synthesizer in a microcontroller is quite doable, and 
beats a DDS-based approach on noise figure, 
power, and cost.

In addition to running the phase detector, PLL, and GPSDO, there is space in the ATMega168 for limited software 
Ethernet transmission for reporting and time mark generation, an ugly hack that allows commands to be sent to the 
device over Ethernet, 10MHz output generation, and generation of two marker signals with 50ns step resolution. The 
complexity is in the design of the phase detector, not in the implementation.

10MHz house standard on top, not 
properly terminated.

10MHz source under test below. Stability 
is provided by the 14.7MHz OCXO, and 
the 'virtual VC-OCXO' disciplined against 
GPS. 

Scope is triggered on the house standard 
for both channels. Exposure time for this 
image is 10 seconds.
 
During a day, the lower trace will move 
about by about 20 ns, equivalent to 6m; 
The GPS has a rather poor view of the 
sky.
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