
Narrow Span High Resolution PLL synthesizer
Kasper Pedersen

kkp2010@kasperkp.dk
rough draft 2, 2010.03.31

Abstract

Classic variable divider and fractional divider PLL
synthesizers have wide tuning range but coarse
resolution. We describe a digital-domain PLL that is
suitable for narrow tuning range (10-5) and arbitrarily
fine resolution (10-12 or better). It is most suited for
oddball frequencies, and not so much for straight
integer divisors.

A test implementation was built at a cost of eur.2 for
the loop controller. A microcontroller implements all
functions.

PLL designs

In the classic PLL, a phase detector is fed with two
signals of mostly-identical frequency. Dividers are
used to prescale the reference and the VFO to
achieve frequency scaling, and the resolution of the
PLL system is set by the resolution of these
dividers. Where integer dividers won't do, fractional-
N dividers are an option. The downside to the
fractional-N divider is that, as the resolution goes
up, so does the low-frequency noise, and thus
close-in noise around the VFO output. If μHz

resolution is needed, no analogue filter will work.
An alternative to the fractional-N divider is to
replace a divider on either the reference path or the
vfo path with a numerically controlled oscillator
(DDS). This does work very well but is power
hungry and expensive.

A post-mixer offset approach

Compared to a standard PLL, there is one
fundamental difference in the arrangement in fig.1:
The oscillator to be disciplined, and the reference,
are both applied to to the phase detector as-is, at
very different frequencies. The phase detector is
sampled, and produces an instantaneous phase
value. This value is compared against a predicted
value, and the error between these two values is
what drives the loop. This arrangement moves the
frequency control from a divider before the phase
detector, to after the phase detector. Here
frequency control can be introduced by slewing of
the phase.
This arrangement cannot easily be built in the
analogue domain, as the output of the phase
detector, adder, and offset generator require
circular-number-system outputs.

 fig.1

Phase detector implementation

An all-digital detector is possible when REF and XO
have no large common divisors. In the test
implementation, REF is a 14.7456MHz OCXO, and
XO is 20MHz.
These have a suitably small greatest common
denominator, 6400 Hz. In 1/6400 second, REF will
complete 2304 cycles, and XO 3125.
If the phase detector samples 3125 times, it will get
3125 equidistant points on the REF phase circle.
The point spacing is then GCD(FXO,FREF)/(FREF*FXO)
= 22 ps, leading to decent phase resolution.

The ATMega168 used for the test implementation
can not do this. Instead it samples at 3/FXO

intervals. It is still possible to get the full resolution
by staggering sample runs with 1 clock delay, so a
slower microcontroller may keep resolution at the
expense of time.
When time is not available, a lower number of
samples may be used, though picking a good
number becomes a manual endeavor.

The selection of sampling interval and number of
samples is done by computing the phase point of
each sampling point, verifying distribution, and then
dividing the sampling points into a suitably large

Phase
detector

+

Phase offset
generator

Loop
filter

D/A

XO

REF

number of buckets. For the test setup, 321 samples
at 3 clock interval was eyeballed to be a neat,
acceptably equidistant point constellation.

fig.2

The sampling points are here divided into 16
buckets, each bucket being 20 or 21 samples. A run
of 321 sets of machine instructions is generated,
each set doing a single sample and then increment
the bucket-count if REF was found to be high at that
instant. After the bins are filled, the phase can be
found by finding the center of distribution.
The theoretical single-shot resolution is
1/FREF/321=211 ps. No external hardware is
required, REF is directly applied to an input pin, and
the internal synchronizer flip flop is used as the
sampling element. An external flipflop will have
better performance even at 211ps resolution.

A complication is that the sample run will not start
phase synchronously with the REF/XO beat, giving
us random-looking phase. This will be handled by
the offset generator, and helps move post-filtering
resolution closer to the theoretical 22ps.

The output of the detector is arbitrarily chosen to be
2048 divisions.

Phase offset generator

The offset generator/predictor is invoked after the
phase detector has done a sample run. The sample
run is time stamped, allowing the predictor to simply
calculate φ=t* dφ/dt. If the system is to be run-time
adjustable, it is better to calculate Δφ=Δt* dφ/dt,
φn=φn-1+Δφ.

To do the above calculation without requiring
excessively long integers, we can exploit that the
signals are periodic.
Δφ=Δt* dφ/dt = (Δt mod (FXO/GCD(FXO,FREF)))* dφ/dt
Thus, for the test implementation, a modulus of
3125 can be applied to Δt before multiplication. In a
32-bit integer this leaves 1.3M counts of usable
resolution.

In the test implementation, the phase step (in
periods) should be 2304/3125=0.73728. In 24.8
scaled fixed point, the per-XO phase increment
should be 0.73728 * phase divisions per turn * 28

=386547.057, rounded to 386547.
The rounded value corresponds to a phase
advance per XO clock of 0.73727989, an error of
2.16Hz, or 0.11 ppm.

If this accuracy is insufficient, or adjustment is
needed, additional or higher resolution generators
may be used. For the test implementation, an
additional generator with variable increment rate
was used. A trim value is accumulated into a 32 bit
variable at a rate of 78.125kHz, and the topmost 11
bit (for a phase span of 2048) are added to the
above compensation. The resolution thus becomes
78.125kHz/232 = 18μHz. This is against REF, so this
translates to a resolution of 1.233* 10-12.

It is not necessary to run a fast interrupt to do the
78kHz accumulation; It is more efficient to calculate
the number of 78kHz periods that have passed, and
then compute the accumulated value whenever
required.

Filter
When the predicted value is subtracted, the output
is the error signal. It will be overlaid with the
resolution noise from the phase detector, pulling
effects in the microcontroller inputs, phase jitter on
the microcontroller clock inputs, and other sources.
The filter tau should be chosen so it matches the
crossover where the XO's (rising with tau) instability
exceeds the (falling with tau) filtered noise from the
phase detector.
For the test implementation, the microcontroller
does 10k acquisitions per second, so for a 1-
second tau the noise is down by about 100x, and
found to be equivalent to ~3ps rms before the DAC.

Unlike for an analogue PLL, the filter does not need
to be wide to allow lock-in. The input to the filter
should not be the raw phase signal. Instead, on
every acquisition, transfer the change in phase onto
an accumulated phase value. This will provide
continuous phase to the filter when the phase
detector rolls over.

DAC implementation
The test implementation uses dual 78kHz PWM
channels summed in hardware for 15 bit resolution.
Linearity and offset do not matter much, as long as
it is monotonous. The PWM is filtered with a 2nd
order 10ms filter, and applied to the XO varactor.
Tuning range is +/- 25 ppm.

It is possible to add ΔΣ modulation techniques to
the PWM. It should be noted, though, that since the
phase detector needs the occasional run of ~1000
uninterrupted clock cycles, interrupting at high rate
to create a fast software ΔΣ in the same
microcontroller will break the phase detector.

Results

The quite unstable on-chip oscillator of the
ATMega168 locks to the OCXO in time set by the
filter. 50ms is suitable since it is decidedly noisy,
and a lower value would be better but the current
external filter prevents that.

A second test setup was built, with a better quality
20MHz XO, and an outer loop locking to an external
pulse-per-second signal by adjusting the phase
predictor. This setup has the medium term stability
of the non-adjustable OCXO, and the close-in noise

figure of the XO. Compared to a conventional
GPSDO, it has no drift from reference voltage, DAC
gain, or varactor path aging.

Putting a narrow bandwidth, high resolution PLL
synthesizer in a microcontroller is quite doable, and
beats a DDS-based approach on noise figure,
power, and cost.

In addition to running the phase detector, PLL, and GPSDO, there is space in the ATMega168 for limited software
Ethernet transmission for reporting and time mark generation, an ugly hack that allows commands to be sent to the
device over Ethernet, 10MHz output generation, and generation of two marker signals with 50ns step resolution. The
complexity is in the design of the phase detector, not in the implementation.

10MHz house standard on top, not
properly terminated.

10MHz source under test below. Stability
is provided by the 14.7MHz OCXO, and
the 'virtual VC-OCXO' disciplined against
GPS.

Scope is triggered on the house standard
for both channels. Exposure time for this
image is 10 seconds.

During a day, the lower trace will move
about by about 20 ns, equivalent to 6m;
The GPS has a rather poor view of the
sky.

OCXO
REF

XO

Input
flipflop

Sample
timer

Phase
Predictor

Phase
sampler

ΔΣ
PWM
DAC

Loop
filter

Error
tracker

Output
timer

Supervisor
Functions

GPSDO

Ethernet
Serial

PWM
filter

Microcontroller

PPS

10MHz

ATMega168

